If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2=333
We move all terms to the left:
9n^2-(333)=0
a = 9; b = 0; c = -333;
Δ = b2-4ac
Δ = 02-4·9·(-333)
Δ = 11988
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11988}=\sqrt{324*37}=\sqrt{324}*\sqrt{37}=18\sqrt{37}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{37}}{2*9}=\frac{0-18\sqrt{37}}{18} =-\frac{18\sqrt{37}}{18} =-\sqrt{37} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{37}}{2*9}=\frac{0+18\sqrt{37}}{18} =\frac{18\sqrt{37}}{18} =\sqrt{37} $
| 3u-12=5(u-2) | | -3n=11 | | 7t+1=-13 | | 11n=-1/3 | | 2x+4=9x+8 | | 12(z+1)-4(z-2)=3(z-3)+4(z-4) | | n/11=-3 | | 36/4=28/x | | 4*6.25+3k=34.60 | | 5(m+2)+4=-26 | | 11+21x=20+20x | | 3x+14/4+x+12/7=7 | | x^2+35x+96=0 | | 11x-6=8x+15 | | 3y=4y-6-y=-6 | | -8w-3-2w+5=-8 | | -9(t-4)=4(t-15) | | -7(x+)=-56 | | 7=-y/11 | | x+3+3x+4=5x+2 | | 6m-4-3m=20 | | 11+a=5 | | 5f-8=6+3f | | -16=1-p | | -5/8y=35 | | 3/x+1-2/x-1=2x/x^2-1 | | 9-(4p-3)=p=36 | | 7-3(5s-10)=67 | | -4+3x=8-3x | | -6z-18=-123 | | 2(x+7)=5x+4 | | 4+2x+7x=7x-6+4 |